Tetrahedron Letters 49 (2008) 5372–5375

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00404039)

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Rotamer-dependent chemiluminescence in the intramolecular charge-transfer-induced decomposition of bicyclic dioxetanes bearing a hydroxyaryl group

Masakatsu Matsumoto *, Haruna Suzuki, Yuusuke Sano, Nobuko Watanabe, Hisako K. Ijuin

Department of Chemistry, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan

article info

Article history: Received 10 June 2008 Accepted 24 June 2008 Available online 26 June 2008

Keywords: Dioxetane Chemiluminescence Rotational isomerism

ABSTRACT

Base-induced chemiluminescent decomposition of acylamino-substituted dioxetane 1b bearing a 3-hydroxyphenyl group proceeded according to dual phase kinetics due to syn–anti isomerism of the aryl group. For dioxetane 7 bearing a 6-hydroxynaphthalen-2-yl group, syn- and anti-rotamers were each isolated and their structures were determined by X-ray single crystallographic analysis. Both rotamers underwent base-induced decomposition accompanied by the emission of red light to exclusively give the same keto imide 8. However, a marked difference in chemiluminescence efficiency was observed between anti-7 and syn-7.

- 2008 Elsevier Ltd. All rights reserved.

Dioxetanes bearing a phenoxide anion as an electron donor undergo intramolecular charge-transfer-induced decomposition (CTID) accompanied by the emission of light. $1,2$ This phenomenon has received considerable attention due to interest in the mechanism related to bioluminescence and chemiluminescence and in a possible application to high-performance biological and clinical analysis.[3–6](#page-3-0) Thus, extensive research has been conducted to elucidate the singlet-chemiexcitation process⁷⁻¹² as well as to develop highly effective dioxetane-based chemiluminescence systems. However, it is still unclear how chemiluminescence is related to the structure of dioxetanes. Thermally persistent acylaminosubstituted dioxetane 1a has very recently been synthesized as a new class of dioxetanes[.13](#page-3-0) One of the most intriguing features of 1a was that a pair of syn-anti rotamers was observed at room temperature by NMR analysis, though neither could be isolated (Scheme 1). This finding prompted us to realize CTID-active acylamino-substituted dioxetanes that exhibit such rotational isomerism and to investigate their chemiluminescence properties,

Scheme 1. Rotamers of dioxetane 1 and CTID of 1b.

^{*} Corresponding author. Tel.: +81 463 59 4111; fax: +81 463 58 9684. E-mail address: matsumo-chem@kanagawa-u.ac.jp (M. Matsumoto).

^{0040-4039/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.06.103

with the expectation that this could shed light on the relationship between the structure of dioxetanes and their chemiluminescence properties.

A CTID-active dioxetane, 3-hydroxyphenyl analog 1b, was easily synthesized by the singlet oxygenation of dihydropyrrole 2. 1 H NMR and 13C NMR spectra showed that the dioxetane existed as a mixture of syn-1b and anti-1b (55:45), similar to the case of 1a.^{[14](#page-3-0)} We first investigated whether or not the rotational isomerism was reflected in the CTID of 1b. When 1b was treated with a large excess of tetrabutylammonium fluoride (TBAF) in DMSO at 25 $°C$,^{[15](#page-3-0)} 1b underwent CTID accompanied by the emission of yellow light (maximum wavelength $\lambda_{\text{max}}^{\text{CL}} = 571$ nm, chemiluminescence efficiency Φ^{CL} = 8.5 \times 10⁻³).^{[16,17](#page-3-0)} After neutralization, spent reaction mixture gave a hydroxy form of 3 in high yield. Therefore, the CTID of 1b was thought to proceed through unstable oxidophenyldioxetane 1c to give keto imide 3 in the excited state [\(Scheme 1\)](#page-0-0).

The time course of the CTID is shown inFigure 1, from which we can see that 1b underwent a dual phase decomposition, consisting of fast and slow reactions. Kinetic analysis revealed that both reactions proceeded according to pseudo-first order kinetics, and their rate constants $k_{\text{fast}}^{\text{CTID}}$ and $k_{\text{slow}}^{\text{CTID}}$ were estimated to be 0.70 s $^{-1}$ and 0.040 s $^{-1}$, respectively. The CTID of ${\bf 1b}$ contrasted sharply with that of analog 4 bearing a 4-hydroxyphenyl, which did not show syn– anti isomerism (Fig. 2). Dioxetane 4 decomposed simply in a single

Figure 1. Time course of CTID of 1b in TBAF/DMSO system at 25 °C.

Figure 2. Dioxetane 4 and oxygen-substituted dioxetane 5.

phase according to pseudo-first order kinetics to give blue light $(k^{\text{CTID}} = 0.14 \text{ s}^{-1}, \ \lambda_{\text{max}}^{\text{CL}} = 471 \text{ nm}, \ \Phi^{\text{CL}} = 1.1 \times 10^{-7})$. Such simple single-phase decomposition has been reported as a rather normal feature for most known CTID-active dioxetanes, as represented by furan-analog 5, for which the rotational isomerism has hardly been observed.¹⁸ These facts suggest that one rotamer (syn or anti) decomposed rapidly while the other decomposed slowly for the CTID of 1b. However, it is not clear whether the rotamer with $k_{\text{slow}}^{\text{CTID}}$ decomposed directly or first isomerized to another rotamer that then decomposed: the syn-anti isomerism of 1 occurred too fast for it to be isolated, but slow enough for it to be observed in NMR.

Our next attempt was based on the idea that the introduction of a bulky aryl group, such as naphthalen-1-yl, in place of 3-hydroxyphenyl, into the dioxetane skeleton 1 may suppress the syn–anti isomerism. When a solution of N-Boc-5-(6-hydroxynaphthalen-1 yl)-2,3-dihydropyrrole 6 in CH_2Cl_2 was irradiated with a Na-lamp together with a catalytic amount of tetraphenylporphin under an $O₂$ atmosphere at 0^oC for 1 h, 1,2-addition of singlet oxygen onto **6** proceeded smoothly (Scheme 2). ¹H NMR analysis of the photolysate showed that dioxetane anti-7 formed exclusively. Chromatographic purification gave pure anti-7 as pale yellow granules, mp 181.5–184.0 °C (dec.) (from AcOEt), which gave satisfactory 1 H NMR, ¹³C NMR, IR, and mass spectral data.¹⁹ The stereochemistry of anti-7 was finally determined by X-ray single crystallographic analysis, as illustrated in [Figure 3](#page-2-0)a.²⁰

When anti-7 was heated in toluene- d_8 at 110 °C for 10 min, ¹H NMR analysis showed that anti-7 isomerized into syn-7 to give a mixture of anti-7:syn-7 = 72:28, and decomposed concomitantly to give ca. 5% of keto ester 8. Prolonged heating of anti-7 did not change the ratio of rotamers but increased decomposition product 8. The rotamer syn-7 could be isolated in pure form by column chromatography as pale yellow prisms, mp $148.0-148.5$ °C (from benzene/CH₂Cl₂).²¹ The structure of syn-7 was determined by ¹H NMR, 13 C NMR, IR, and mass spectral analyses, and finally by X-ray single crystallographic analysis, as illustrated in [Figure 3b](#page-2-0).^{[20](#page-3-0)} Rotamer syn-7 gave a mixture of anti-7:syn-7 with the same ratio as with anti-7 along with a small amount of 8 on heating at

Figure 3. ORTEP views of dioxetane 7.

110 °C in toluene- d_8 . However, isomerization between anti-7 and syn-7 was hardly observed at room temperature. The present results provide a unique example of the successful isolation of rotamers for aryl-substituted dioxetane.

When anti-7 was treated with a large excess of TBAF at 25 $\mathrm{°C}$, $\mathrm{^{22}}$ $\mathrm{^{22}}$ $\mathrm{^{22}}$ anti-7 underwent CTID following pseudo-first order kinetics to emit red light with $\lambda_{\text{max}}^{\text{CL}} = 678$ nm, $\Phi^{\text{CL}} = 2.8 \times 10^{-4}$, and $k^{\text{CTID}} =$ 3.2×10^{-2} s⁻¹. The CTID of syn-7 also proceeded to give red light upon similar treatment with TBAF. However, Φ^{CL} for syn-7 was only 1/19 of that for anti-7, and the rate of CTID was considerably slower than that for anti-7 (k^{CTID} :syn-7/anti-7 = 1/6), as summarized in Table 1. The chemiluminescence spectrum for syn-7 was also different to some extent from that for anti-7, as illustrated in Figure 4 and Table 1. Next, we examined the CTIDs of rotamers in acetonitrile to confirm whether rotamer-dependent chemiluminescent decomposition also occurred in a solvent other than DMSO. As shown in Table 1, a marked difference in Φ^{CL} was also observed between syn-7 and anti-7 in acetonitrile.

The results described above raise important questions related to the singlet-chemiexcitation mechanism for CTID of dioxetanes. It is not surprising that k^{CTID} changed depending on the conformation of an aromatic ring, since the rate of CTID has often been reported to be affected by the structure of dioxetanes.^{5,6} However, we did not expect the marked difference in chemiluminescence efficiency between syn-7 and anti-7. The difference in the chemiluminescence spectra between syn-7 and anti-7 is also rather unusual for a homogeneous system, although both rotamers gave the same keto imide 8.

Excited oxido anion 9 was thought to be an emitter produced from both anti-7 and syn-7 in CTID, since 8 was isolated in high yields from both spent reaction mixtures after neutralization. The fluorescence spectrum of authentic oxido anion 9 generated from 8 in situ coincided with the chemiluminescence spectrum of syn-7 in both solvent systems (DMSO and acetonitrile): maximum wavelength of fluorescence $\lambda_{\max}^{\rm fl}=688$ nm, and fluorescence

Table 1

TBAF-induced chemiluminescent decomposition of dioxetanes 1b, 4, and rotamers of dioxetane anti-7 and syn- $7⁴$

Dioxetane	Solvent	$\lambda_{\max}^{\text{CL}}$ (nm)	Φ CLb	k^{CTID} (s ⁻¹)
1 _b	DMSO	571	8.5×10^{-3}	0.70, 0.040
4	DMSO	471	1.1×10^{-7}	0.14
anti-7	DMSO	678	2.8×10^{-4}	3.2×10^{-2}
$syn-7$	DMSO	688	1.5×10^{-5}	5.7×10^{-3}
anti-7	Acetonitrile	690	1.0×10^{-4}	6.5×10^{-3}
$syn-7$	Acetonitrile	701	8.3×10^{-6}	6.5×10^{-4}

All reactions were carried out at 25° C.

b Chemiluminescence efficiencies were estimated based on the value for 3-(3tert-butyldimethylsiloxy)phenyl-4-adamantylidene-4-methoxy-1,2-dioxetane.¹

Figure 4. Chemiluminescence spectra of 3-hydroxyphenyldioxetane 1b, 4hydroxyphenyldioxetane 4, and 6-hydroxynaphthalen-1-yl-dioxetanes anti-7 and syn-7.

efficiency Φ ^{fl} = 1.2 × 10⁻³ in DMSO, $\lambda_{\text{max}}^{\text{fl}} = 700$ nm, and Φ ^{fl} = 5.8 × 10⁻⁴ in acetonitrile. Thus, the singlet-chemiexcitation efficiency $\Phi_s = \Phi^{CL}/\Phi^{fl}$ for the CTID of syn-7 was estimated to be 0.013 in the DMSO system and 0.014 in the acetonitrile system.

On the other hand, Φ_s for anti-7 could not be reliably estimated since the chemiluminescence spectrum and fluorescence spectrum of authentic 9 deviated from each other to some extent. However, by using the Φ^{fl} s of authentic 9, we formally estimated Φ_s for anti-7 to be 0.23 in the DMSO system and 0.17 in the acetonitrile system. These formal Φ _s are very close to the value of Φ _s reported for the CTID of related bicyclic dioxetane 10 bearing a 6- hydroxynaphthalen-1-yl group (0.23 in DMSO) [\(Scheme 3\)](#page-3-0).^{[23](#page-3-0)} These estimations suggest that the marked difference in Φ^{CL} between anti-7 and syn-7 can be attributed to the difference in singlet-chemiexcitation efficiency.

As noted above, the chemiluminescence spectra of anti-7 and syn-7 did not coincide with each other, though both isomers 7 exclusively produced the same keto ester 8. This discrepancy is likely due to the difference in stereochemistry between de novo keto imides 9s formed from anti-7 or syn-7. Thus, de novo 9s, that is, anti-9 and syn-9, may inherit the corresponding conformations from intermediary dioxetanes anti-11 and syn-11, as illustrated in [Scheme 3.](#page-3-0) This idea means that the features of singlet-chemiexcitation for anti-11 should be different from those for syn-11. Tanaka, Tanaka and we (MM) will report elsewhere a theoretical elucidation of how the singlet-chemiexcitation process is affected by syn–anti conformational isomerism of dioxetane bearing an oxidoaryl group.²⁴

The present findings should stimulate investigation of the mechanism of the singlet-chemiexcitation process for dioxetane-

based chemiluminescence as well as bioluminescence, and should provide new insight into the design of high-performance chemiluminescence compounds.

Acknowledgments

The authors gratefully acknowledge financial assistance provided by Grants-in aid (No. 17550050) for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References and notes

- Schaap, A. P.; Gagnon, S. D. J. Am. Chem. Soc. 1982, 104, 3504-3506.
- 2. Schaap, A. P.; Chen, T.-S.; Handley, R. S.; DeSilva, R.; Giri, B. P. Tetrahedron Lett. 1987, 28, 1155–1158.
- 3. Beck, S.; Köster, H. Anal. Chem. 1990, 62, 2258–2270.
- 4. Adam, W.; Reihardt, D.; Saha-Möller, C. R. Analyst 1996, 121, 1527–1531.
- 5. Matsumoto, M. J. Photochem. Photobiol. C: Photochem. Rev. 2004, 5, 27–53.
- 6. Matsumoto, M.; Watanabe, N. Bull. Chem. Soc. Jpn. 2005, 78, 1899–1920.
- 7. Wilson, T. In Singlet O2; Frimer, A. A., Ed.; CRC Press: Florida, 1985; Vol. II, p 37.
- 8. Wilson, T. Photochem. Photobiol. 1995, 62, 601–606.
- 9. McCapra, F. J. Photochem. Photobiol. A: Chem. 1990, 51, 21–28.
- 10. Adam, W.; Matsumoto, M.; Trofimov, A. V. J. Am. Chem. Soc. 2000, 122, 8631– 8634 and references cited therein.
- 11. Takano, Y.; Tsunesada, T.; Isobe, H.; Yoshioka, Y.; Yamaguchi, K.; Saito, I. Bull. Chem. Soc. Jpn. 1999, 72, 213–225.
- 12. Fujimori, K.; Wakasugi, K.; Matsumoto, M. Chem. Lett. 2002, 762–763.
- 13. Matsumoto, M.; Sano, Y.; Watanabe, N.; Ijuin, H. K. Chem. Lett. 2006, 35, 882– 883.
- 14. Selected data for 1b: Colorless amorphous solid; ¹H NMR (500 MHz, CDCl₃) (55:45 mixture of conformational isomers): $\delta_{\rm H}$ 1.01 (s, 9H \times 0.55), 1.01 (s, 9H \times 0.45), 1.06–1.13 (m, 12H), 1.37 (s, 3H \times 0.45), 1.40 (s, 3H \times 0.55), 3.63 (d, / = 10.1 Hz, 1H), 4.06 (d, J = 10.1 Hz, 1H \times 0.55), 4.07 (d, J = 10.1 Hz, 1H \times 0.45), 6.25 (br s, 1H × 0.45), 6.45 (br s, 1H × 0.55), 6.79–6.88 (m, 2H), 7.15–7.27 (m,
2H) ppm; ¹³C NMR (125 MHz, CDCl₃): ¿_C 20.6, 25.7 and 25.7, 27.3 and 27.3,
27.7 and 27.8, 37.8 and 37.9, 43.0 and 43.1, 62.9 and 63.0, 8 and 104.8, 106.2 and 106.5, 114.0 and 115.1, 115.5 and 116.2, 119.3 and 121.1, 128.7 and 128.8, 139.3 and 139.4, 154.5 and 154.9, 155.7 and 155.8 ppm; IR
(KBr): v 3401, 3006, 2979, 2931, 2892, 1706, 1674, 1604, 1592 cm⁻¹; Mass (m/z, %): 345 (M⁺-32, 0.3), 278 (29), 264 (14), 220 (62), 192 (23), 121 (100), 93 (12), 57 (46), 56(20); HRMS (ESI): 400.2071, calcd for $C_{21}H_{31}NO_5Na$ [M+Na⁺] 400.2100; Anal. Calcd for C₂₁H₃₁NO₅: C, 66.82; H, 8.28; N, 3.71; Found: C, 66.93; H, 8.36; N, 3.55.
- 15. A solution of **1b** in DMSO (1.0×10^{-5} mol dm⁻³, 1 mL) was added to a solution of TBAF in DMSO (1.0 \times 10⁻² mol dm⁻³, 2 mL).
- 16. Chemiluminescence efficiencies Φ^{CL} s were estimated based on the value for 3-(3-tert-butyldimethylsiloxy)phenyl-4-adamantylidene-4-methoxy-1,2-dioxetane.¹⁷
- 17. Trofimov, A. V.; Mielke, K.; Vasil'ev, R. F.; Adam, W. Photochem. Photobiol. 1996, 63, 463–467.
- 18. Matsumoto, M.; Mizoguchi, Y.; Motoyama, M.; Watanabe, N. Tetrahedron Lett. 2001, 42, 8869–8872.
- 19. Selected data for anti-7: ¹H NMR (400 MHz, CDCl₃): δ_H 0.69 (s, 9H), 0.88 (s, 9H) 1.26 (s, 3H), 1.60 (s, 3H), 3.95 (d, J = 10.5 Hz, 1H), 4.20 (d, J = 10.5 Hz, 1H), 5.27
(s, 1H), 7.07 (dd, J = 9.3 and 2.7 Hz, 1H), 7.19 (d, J = 2.7, 1H), 7.45 (dd, J = 8.3 and 7.6 Hz, 1H), 7.69 (d, J = 8.3 Hz, 1H), 7.97 (dd, J = 7.6 and 1.2 Hz, 1H), 8.42 (d
J = 9.3 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ_C 22.0, 26.8, 26.9, 27.2, 37.9 43.1, 63.1, 81.3, 104.3, 107.5, 111.1, 117.5, 125.3, 126.0, 126.3, 127.5, 128.5, 132.7, 135.5, 153.3, 154.3 ppm; IR (KBr): \tilde{v} 3321, 3006, 2979, 2930, 2891, 1703.
1664, 1637, 1604 cm⁻¹; Mass (m/z, %): 427 (M⁺, 10), 395 (4), 270 (94), 171 (100); HRMS (ESI): 450.2258, calcd for C₂₅H₃₃NO₅Na [M + Na⁺] 450.2256. Anal. Calcd for C₂₅H₃₃NO₅ + AcOEt (2.0 w/w %): C, 69.92; H, 7.81; N, 3.21; Found: C, 69.61; H, 7.74; N, 3.22.
- 20. Crystal data for anti-7: $C_{25}H_{33}NO_5$ ($M_r = 427.54$), pale yellow granule, $0.25 \times 0.15 \times 0.10$ mm, monoclinic, space group $P2_1/c$ (#14), $a = 9.967(5)$ Å $b = 14.418(13)$ Å, $c = 16.407(8)$ Å, $\beta = 105.298(4)$ °, $V = 2274.2(26)$ Å³, $Z = 4$, $\rho_{\text{calcd}} = 1.249$ g cm⁻³, $T = 120$ K, $F(000) = 920.00$, reflections collected/unique 24965/5169 (R_{int} = 0.035), μ (MoK α) = 0.86 cm⁻¹. Final R indices R_1 = 0.067 [*i* $> 2\sigma(I)$], $wR_2 = 0.184$ (all data), GOF on $F^2 = 0.879$, and residual electron density $0.47/-0.52$ e Å⁻³.CCDC deposition number: 687258. Crystal data for syn-7: $C_{25}H_{33}NO_5 \cdot 0.5(C_8H_{10}) (M_r = 480.62)$, pale yellow prism, 0.25 \times 0.10 \times 0.10 mm. monoclinic, space group $P2_1/c$ (#14), $a = 12.857(13)$ Å, $b = 21.14(2)$ Å, $c = 19.82(3)$ Å, $\beta = 91.87(2)$ °, $V = 5384.3(10)$ Å³, $Z = 8$, $\rho_{\text{calcd}} = 1.186$ g cm⁻³
 $T = 120$ K, $F(000) = 2072.00$, reflections collected/unique 57236/12215 $(R_{\text{int}} = 0.095)$, $\mu(\text{MoK}\alpha) = 0.80 \text{ cm}^{-1}$. Final R indices $R_1 = 0.125$ [$I > 2\sigma(I)$]. wR_2 = 0.416 (all data), GOF on F^2 = 1.000, and residual electron density 0.31/ -0.34 e Å $^{-3}$. CCDC deposition number: 687259. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB21EZ, UK; fax(+44)1223-336-033; or deposit@ccdc.cam.au.uk).
- 21. syn-7: ¹H NMR (400 MHz, CDCl₃): δ_H 0.81 (br s, 9H), 0.92 (s, 9H), 1.15 (s, 3H) 1.52 (s, 3H), 3.77 (d, J = 10.0 Hz, 1H), 4.18 (d, J = 10.0 Hz, 1H), 6.35-6.60 (m, 1H), 6.85-7.20 (m, 2H), 7.27-7.37 (m, 2H), 7.62 (d, J = 7.5 Hz, 1H), 8.79 (d, $J = 9.5$ Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ_C 21.3, 26.4, 27.4, 27.6, 38.0, 43.5, 63.1, 81.3, 108.0, 108.9, 109.9, 118.3, 124.1, 124.4, 127.8, 128.2, 129.5, 134.7, 135.8, 153.2, 154.6 ppm; IR (KBr): \tilde{v} 3369, 2979, 2930, 1703, 1667, 1626 1602 cm⁻¹; mass (m/z, %): 427 (M⁺, 2), 395 (1), 270 (45), 171 (100); HRMS (ESI): 450.2257, calcd for C₂₅H₃₃NO₅Na [M+Na⁺] 450.2256. Anal. Calcd for $C_{26}H_{37}NO_4$ 3/4 C_6H_6 : C, 72.89; H, 7.78; N, 2.88; Found: C, 72.86; H, 7.86; N, 2.81.
- 22. A solution of anti-7 in DMSO $(1.0 \times 10^{-3} \text{ mol dm}^{-3}, 1 \text{ mL})$ was added to a solution of TBAF in DMSO $(1.0 \times 10^{-1} \text{ mol dm}^{-3}, 2 \text{ mL})$.
- Hoshiya, N.; Fukuda, N.; Maeda, H.; Watanabe, N.; Matsumoto, M. Tetrahedron 2006, 62, 5808–5820.
- 24. Tanaka, C.; Tanaka, J.; Matsumoto, M., submitted for publication.